On the one dimensional Dirac equation with potential

نویسندگان

چکیده

We investigate L1→L∞ dispersive estimates for the one dimensional Dirac equation with a potential. In particular, we show that evolution satisfies natural t−12 decay rate, which may be improved to t−32 at cost of spatial weights when thresholds are regular. classify structure threshold obstructions, showing there is most space each threshold. that, in presence resonance, and faster weighted bound except piece rank two, per Further, prove high energy bounds near optimal respect required smoothness initial data. To do so use variant argument was originally developed study Kato smoothing magnetic Schrödinger operators. This method has never been used before obtain estimates. As consequence our analysis uniform limiting absorption principle, Strichartz estimates, existence an eigenvalue free region operator non-self-adjoint Nous étudions les estimations dispersives de pour l'équation à une dimension avec un potentiel. En particulier, nous montrons que l'évolution satisfait le taux décroissance naturel t−12, qui peut être amélioré au prix des poids spatiaux lorsque seuils sont réguliers. classons la obstructions seuil, montrant qu'il y plus espace unidimensionnel chaque seuil. qu'en présence d'un seuil résonance, naturel, et borne pondérée rapide sauf morceau rang deux, par De plus, prouvons bornes haute énergie presque optimales rapport régularité requise données initiales. Pour ce faire, utilisons variante été initialement développée étudier lissage opérateurs magnétiques. Cette méthode n'a jamais utilisée auparavant obtenir L1→L∞. conséquence notre analyse, principe uniforme d'absorption limite, l'inégalité Strichartz, provons l'existence d'une région est libre valeurs propres potentiels non auto-adjoint.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solution of the one-dimensional Dirac equation with a linear scalar potential

We solve the Dirac equation in one space dimension for the case of a linear, Lorentz-scalar potential. This extends earlier work of Bhalerao and Ram [Am. J. Phys. 69 (7), 817-818 (2001)] by eliminating unnecessary constraints. The spectrum is shown to match smoothly to the nonrelativistic spectrum in a weak-coupling limit. 3.65.Pm, 3.65.Ge Typeset using REVTEX 1

متن کامل

Intertwining technique for the one-dimensional stationary Dirac equation

The technique of differential intertwining operators (or Darboux transformation operators) is systematically applied to the one-dimensional Dirac equation. The following aspects are investigated: factorization of a polynomial of Dirac Hamiltonians, quadratic supersymmetry, closed extension of transformation operators, chains of transformations, and finally particular cases of pseudoscalar and s...

متن کامل

One Component Dirac Equation

We develop a relativistic free wave equation on the complexified quaternions, linear in the derivatives. Even if the wave functions are only one-component, we show that four independent solutions, corresponding to those of the Dirac equation, exist. A partial set of translations between complex and complexified quaternionic quantum mechanics may be defined. a) e-mail address: [email protected]

متن کامل

On the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators

In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...

متن کامل

On the Number of Eigenvalues of the Discrete One-dimensional Dirac Operator with a Complex Potential

In this paper we define a one-dimensional discrete Dirac operator on Z. We study the eigenvalues of the Dirac operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Mathématiques Pures et Appliquées

سال: 2021

ISSN: ['0021-7824', '1776-3371']

DOI: https://doi.org/10.1016/j.matpur.2021.04.008